The N–queens puzzle is the problem of placing N chess queens on an N × N chessboard so that no two queens threaten each other. Thus, the solution requires that no two queens share the same row, column, or diagonal.
N-Queens is a tricky problem. To solve this problem efficiently, it requires knowing the backtracking algorithm. Basically, the problem is to place N queens on an NxN chessboard. So in this article, we will discuss how to solve the N-Queens problem using a backtracking algorithm.
C# Code
| using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ConsoleApp1 {     class Program     {         const int N =
  4;         static void
  Main(string[] args)         {             int
  count = 0;             int[,]
  board = new int[N, N];             //Initialize
  the board array to 0             for (int i =
  0; i < N; i++)             {                 for (int j =
  0; j < N; j++)                 {                    
  board[i, j] = 0;                 }             }             //Initialize
  the pointer array             int[]
  pointer = new int[N];             for (int i =
  0; i < N; i++)             {                 pointer[i]
  = -1;             }             //Implementation
  of Back Tracking Algorithm             for (int j =
  0; ;)             {                
  pointer[j]++;                 //Reset
  and move one column back                  if
  (pointer[j] == N)                 {                    
  board[pointer[j] - 1, j] = 0;                    
  pointer[j] = -1;                     j--;                     if (j
  == -1)                     {                        
  Console.WriteLine("all possible solutions to N–Queens problem are done");                         break;                     }                 }                 else                 {                    
  board[pointer[j], j] = 1;                     if
  (pointer[j] != 0)                     {                        
  board[pointer[j] - 1, j] = 0;                     }                     if
  (SolutionCheck(board))                     {                        
  j++;//move to next column                         if (j
  == N)                         {                            
  j--;                            
  count++;                            
  Console.WriteLine("Solution" +
  count.ToString() + ":");                            
  for (int p = 0; p < N; p++)                            
  {                                 for (int q =
  0; q < N; q++)                                
  {                                    
  Console.Write(board[p, q] + " ");                                
  }                                
  Console.WriteLine();                             }                         }                     }                 }             }            
  Console.ReadLine();         }         public static bool
  SolutionCheck(int[,] board)         {             //Row
  check             for (int i =
  0; i < N; i++)             {                 int sum
  = 0;                 for (int j =
  0; j < N; j++)                 {                     sum =
  sum + board[i, j];                 }                 if
  (sum > 1)                 {                     return false;                 }             }             //Main
  diagonal check             //above             for (int i =
  0, j = N - 2; j >= 0; j--)             {                 int sum
  = 0;                 for (int p =
  i, q = j; q < N; p++, q++)                 {                     sum =
  sum + board[p, q];                 }                 if
  (sum > 1)                 {                     return false;                 }             }             //below             for (int i =
  1, j = 0; i < N - 1; i++)             {                 int sum
  = 0;                 for (int p =
  i, q = j; p < N; p++, q++)                 {                     sum =
  sum + board[p, q];                 }                 if
  (sum > 1)                 {                     return false;                 }             }             //Minor
  diagonal check             //above             for (int i =
  0, j = 1; j < N; j++)             {                 int sum
  = 0;                 for (int p =
  i, q = j; q >= 0; p++, q--)                 {                     sum =
  sum + board[p, q];                 }                 if
  (sum > 1)                 {                     return false;                 }             }             //below             for (int i =
  1, j = N - 1; i < N - 1; i++)             {                 int sum
  = 0;                 for (int p =
  i, q = j; p < N; p++, q--)                 {                     sum =
  sum + board[p, q];                 }                 if
  (sum > 1)                 {                     return false;                 }             }             return true;         }     } } | 
Output
.png)